Different Temperature Dependence of Magnetic Susceptibility of Different Molecular Complexes of Copper (II) with 7-Hydroxy-4-methyl-5-aza-hept-4-en-2-on

L. Merz and W. Haase

Physikalische Chemie I der TH Darmstadt

(Z. Naturforsch. 31 a, 177-182 [1976]; received December 24, 1975)

Two principally different molecular structures in the crystalline state are known from the copper (II) complex with 7-hydroxy-4-methyl-5-aza-hept-4-en-2-on. The magnetic susceptibilities of three forms of this compound $[\alpha\text{-}(\text{CuEIA})_4$, $\beta\text{-}(\text{CuEIA})_4$, and $\beta\text{-}(\text{CuEIA})_4 \cdot 2 \, \text{C}_6 \text{H}_6]$ have been measured in the temperature range $2.6-300\,\text{K}$. The results indicate that principally different molecular structures correspond to principally different magnetic properties. While the $\alpha\text{-}form$ shows anti-ferromagnetic spin coupling in the S'=0 ground state, the electrons in the $\beta\text{-}form$ are coupled ferromagnetically in the S'=2 ground state. A fitting procedure of a theoretical equation based on the isotropic HDVV-model led to a satisfactory agreement between calculated and experimental data for $\alpha\text{-}(\text{CuEIA})_4$ and $\beta\text{-}(\text{CuEIA})_4$, while this was not possible for $\beta\text{-}(\text{CuEIA})_4 \cdot 2\,\text{C}_6\text{H}_6$. The exchange parameters obtained for $\alpha\text{-}(\text{CuEIA})_4$ ($g=2.13,\ J_{12}=-17\,\text{cm}^{-1},\ J_{13}=+3.5\,\text{cm}^{-1},$ and $N_\alpha=60\cdot10^{-6}\,\text{cgs-emu})$ are in good agreement with the values given by Ginsberg et al. For $\beta\text{-}(\text{CuEIA})_4$ a weak antiferromagnetic intercluster interaction could be determined at low temperatures. The fitting procedure yielded the following values: $g=2.05,\ J_{12}=-6.4\,\text{cm}^{-1},\ J_{13}=+24.2\,\text{cm}^{-1},\ N_\alpha=10\cdot10^{-6}\,\text{cgs-emu},\ \Theta=-0.27^\circ.$

1. Introduction

Of the copper(II) complex with 7-hydroxy-4-methyl-5-aza-hept-4-en-2-on, (CuEIA)₄, two principally different tetrameric molecular structures are known in the crystalline state ^{1, 2}. Figure 1 shows

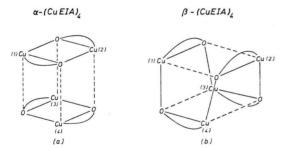


Fig. 1. Principal molecular structures of the Cu₄O₄-cores of α -(CuEIA)₄ (a) and β -(CuEIA)₄ (b). Cu-O: \sim 1.97 Å; Cu-O: \sim 2.37 Å; CuO: chelate group.

the principal structures of the Cu₄O₄-cores. A similar behavior is found with the group of copper(II) complexes with N,N-disubstituted aminoalcohols ³⁻⁶. For these it could be demonstrated that spin coupling of the magnetic centres inside the tetrameric molecules is different and that one of the principal structures goes with antiferromagnetic spin coupling, while the other one goes with ferromagnetic spin coupling. (CuEIA)₄ offers the opportunity to investigate the magnetism of tetrameric

 ${\rm Cu\,(II)}$ structures with different ${\rm Cu_4O_4}$ cubane type cores within one chemical compound in order to get information about the magnitude of the magnetic interaction between the single copper (II) ions. The exchange integrals J_{ij} can be determined from the temperature dependence of magnetic susceptibility using the isotropic Heisenberg-Dirac-van Vleckmodel (HDVV-model), in which the effective Hamiltonian describing the energy difference between states with different total spin S' has the form $^{7-9}$

$$\widehat{H} = -2\sum_{i>j} J_{ij}\,\widehat{S}_i\cdot\widehat{S}_j$$
.

The investigation includes α -(CuEIA)₄, β -(CuEIA)₄, and β -(CuEIA)₄·2 C₆H₆². The crystal structure of β -(CuEIA)₄ resulting from β -(CuEIA)₄·2 C₆H₆ by loss of benzene is not known. β -(CuEIA)₄ is also the product resulting from direct preparation ².

In his review ⁷ Ginsberg gave the values for the exchange integrals of α -(CuEIA)₄. We have not found the experimental data of the magnetic susceptibility as a function of temperature in the literature.

2. Experimental

The compound CuEIA was prepared as described by Jäger ¹⁰. Proof of the existence of β -(CuEIA)₄ [as β -(CuEIA)₄·2 C₆H₆ and β -(CuEIA)₄], besides the known α -(CuEIA)₄¹, was given in Ref. ² including the preparation conditions.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Magnetic susceptibilities in the temperature range $2.6-300 \, \mathrm{K}$ were determined by the Foner method as in Ref. ⁶. In the case of β -(CuEIA)₄·2 C₆H₆ one must be aware that the compound does not decompose by loss of benzene during the performance of the suspectibility determination.

Susceptibility data were field independent above 10 K and measured at 10 kG. Below 10 K a small field dependence of susceptibility data was determined and susceptibility data were obtained at 1 kG. Corrections for the underlying diamagnetism were applied using published values ¹¹.

In the fitting procedure of the theoretical susceptibility equation based on the HDVV-model (symmetry S_4) to the experimental data, the following terms were used as criterion

$$\sum_{i} \frac{\left| \chi_{\text{M exp}_{i}} - \chi_{\text{M calc}_{i}} \right|}{\chi_{\text{M exp}_{i}}} \left[\alpha - (\text{CuEIA})_{4} \right]$$
 (1)

and

$$\sum_{i} (\chi_{\text{M exp}_{i}} - \chi_{\text{M calc}_{i}})^{2} T_{i}^{2}$$

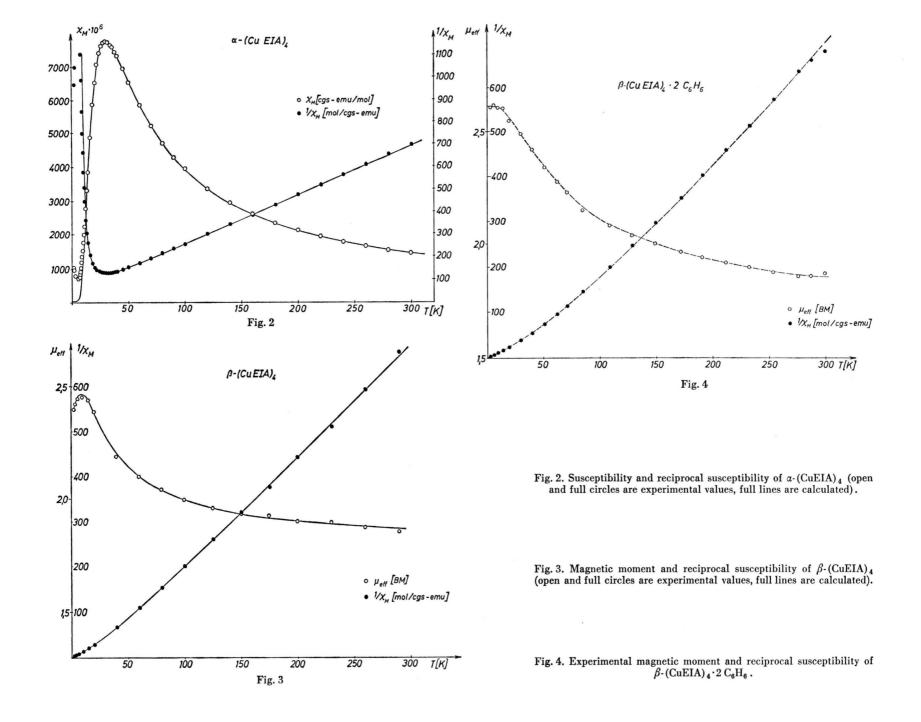
$$[\beta \cdot (\text{CuEIA})_{4}, \quad \beta \cdot (\text{CuEIA})_{4} \cdot 2 C_{6} H_{6}].$$
(2)

3. Results and Discussion

$$\alpha$$
-(CuEIA)₄

 $\alpha\text{-}(\text{CuEIA})_4$ has $S_4\text{-symmetry}$ in the crystalline state 1 as indicated in Figure 1 a. Cu – Cu distances are 3.006 (9) Å $(2\times)$ and 3.259 (8) Å $(4\times)$ 1 . Because of the direct comparison with $\beta\text{-}(\text{CuEIA})_4$ and $\beta\text{-}(\text{CuEIA})_4\cdot 2~C_6H_6$ the temperature dependence of magnetic susceptibility (Table 1, Fig. 2) was determined, as it is neither given in Ref. 7 nor elsewhere.

The appropriate susceptibility Eq. (3) for this problem (4 centres-spin-1/2-system of symmetry S_4 , the equation for symmetry D_{2d} is analogous)


$$\chi_{\rm M} = \frac{N g^2 \beta^2}{4 k T} \cdot \frac{10 e^{2x} + 2 e^{-2x} + 4 e^{-2y}}{5 e^{2x} + 3 e^{-2x} + e^{-4x} + 6 e^{-2y} + e^{-4y}} + N_{\alpha}, \quad (3)$$

 $[x=J_{13}/k\,T,\;y=J_{12}/k\,T,\;\chi_{\rm M}$: per mol copper (II)] was fitted to the experimental susceptibility data in the temperature range $>\!20\,{\rm K}$. The data in the range $<\!20\,{\rm K}$ were omitted because of the probable existence of a small paramagnetic impurity. The fitting process yielded the following values of the exchange integrals: $J_{12}=-17~{\rm cm}^{-1}$ [between the short bonded copper atoms 1-2 and 3-4 (Fig. 1a)] and

Table 1. Experimental and with Eq. (3) calculated magnetic susceptibilities $\chi_{\text{M exp}}$ and $\chi_{\text{M calc}}$ [cgs-emu] and magnetic moment μ_{eff} (=2.828 $V\chi_{\text{M exp}} \cdot T$ of α -(CuEIA)₄.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.1 \$\textstyle{9}62\$ 0.13 60 2.6 820 0.13 60 3.0 772 0.14 60 3.5 797 0.15 60 5.1 699 0.17 84 6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802	·106
2.6 820 0.13 60 3.0 772 0.14 60 3.5 797 0.15 60 5.1 699 0.17 84 6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534	
3.0 772 0.14 60 3.5 797 0.15 60 5.1 699 0.17 84 6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065	
3.0 772 0.14 60 3.5 797 0.15 60 5.1 699 0.17 84 6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065	
3.5 797 0.15 60 5.1 699 0.17 84 6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425	
5.1 699 0.17 84 6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 <td></td>	
6.0 715 0.19 145 6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 <td></td>	
6.5 743 0.20 207 7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 </td <td></td>	
7.1 837 0.22 314 7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775<	
7.5 907 0.23 407 8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.37 7792 32 7732 1.41 7765 34 7660	
8.0 1012 0.25 548 8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592	
8.5 1178 0.28 718 9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469	
9.0 1341 0.31 914 9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 744	
9.5 1514 0.34 1136 10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 732	
10.0 1743 0.37 1380 10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948	
10.5 1978 0.41 1643 11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 </td <td></td>	
11 2236 0.44 1921 12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860	
12 2780 0.52 2512 13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 <td></td>	
13 3312 0.59 3122 14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 <td></td>	
14 3854 0.66 3729 16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 <td></td>	
16 4886 0.79 4858 18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 <td></td>	
18 5869 0.92 5802 20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917	
20 6529 1.02 6534 22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945<	
22 7077 1.12 7065 24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322	
24 7409 1.19 7425 26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 233	
26 7627 1.26 7646 28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 21	
28 7725 1.32 7759 30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
30 7775 1.37 7792 32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
32 7732 1.41 7765 34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
34 7660 1.44 7694 36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
36 7599 1.48 7592 38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
38 7448 1.50 7469 40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
40 7327 1.53 7330 45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
45 6948 1.58 6953 50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
50 6541 1.62 6566 60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
60 5860 1.68 5845 70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
70 5233 1.71 5228 80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
80 4704 1.73 4712 90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
90 4273 1.75 4281 100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
100 3949 1.78 3919 120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
120 3361 1.80 3346 140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
140 2945 1.82 2917 160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
160 2605 1.83 2585 180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
180 2331 1.83 2322 200 2106 1.84 2107 220 1931 1.84 1930	
200 2106 1.84 2107 220 1931 1.84 1930	
220 1931 1.84 1930	
240 1774 1.85 1780 260 1648 1.85 1653	
280 1531 1.85 1543	
300 1438 1.86 1447	

 $J_{13}=+3.5~{\rm cm^{-1}}$ [between the longer bonded copper atoms 1-3, 1-4, 2-3, and 2-4 (Fig. 1a)] $(g=2.13,~N_a=60\cdot10^{-6}~{\rm cgs\text{-}emu})$ in good agreement with the values given by Ginsberg et al. 7 ($J_{12}=-15~{\rm cm^{-1}},~J_{13}=+4~{\rm cm^{-1}}$). The mean percentual deviation per experimental point in the temperature range $>20~{\rm K}$ is 0.35%.

The result indicates antiferromagnetic spin coupling in the ground state (Fig. 5, see later). Spin coupling via the different Cu-O bonds has different signs (antiferromagnetic interactions via two short Cu-O bonds and weaker ferromagnetic interactions via one short and one long Cu-O bond).

Ginsberg 7 has reported possible exchange pathways in accordance with the model of superexchange.

β -(CuEIA)₄ and β -(CuEIA)₄·2 C₆H₆

A crystal structure determination 2 proved that the molecule β -(CuEIA)₄ in crystalline β -(CuEIA)₄ ·2 C₆H₆ only has symmetry C₁. It can be approximated by S₄-symmetry as shown schematically for the Cu₄O₄-core in Figure 1 b. All molecular forms, of which the Cu₄O₄-core is principally identical with the one in Fig. 1b, are called β -form². They possess ferromagnetic spin coupling in the ground state $[\beta$ -(CuEIA)₄ and β -(CuEIA)₄·2 C₆H₆, Table 2, Figs. 3, 4] in contrast to the antiferromagnetism of the α -form (Table 1, Figure 2). As the magnetism of the structurally unknown powder β -(CuEIA)₄ is very similar to that of the structurally known β -(CuEIA)₄·2 C₆H₆, and as β -(CuEIA)₄ results from β -(CuEIA)₄·2 C₆H₆ by loss of benzene, we believe proved that the molecules in the powder β -(CuEIA)₄ are really of the β -form.

Assuming the highest possible symmetry S_4 for β-(CuEIA)₄ a fitting procedure of a slightly modified form of Eq. (3) to the experimental data was undertaken. To allow for weak intercluster interactions T in Eq. (3) was replaced by $(T-\Theta)$, where Θ means the Weiss constant. The exchange integral J_{12} corresponds to the longer Cu-Cu-distances (2×) [mean value 3.30 Å in the β -(CuEIA)₄ $\cdot 2 \,\mathrm{C_6 H_6}$], while the exchange integral I_{13} corresponds to the shorter Cu-Cu-distances $(4 \times)$ [mean value 3.12 Å in β -(CuEIA)₄·2 C₆H₆]. The fitting procedure in the temperature range 2.6-290 K yielded the following values: $J_{12} = -6.4 \text{ cm}^{-1}$, J_{13} $= +24.2 \text{ cm}^{-1}, \quad g = 2.05, \quad N_a = 10 \cdot 10^{-6} \text{ cgs-emu},$ and $\Theta = -0.27^{\circ}$ [deviation 2.91·10⁻⁴, Gl. (2)]. The agreement between calculated and experimental data is good (Table 2 a, Figure 3).

This result indicates that ferromagnetic spin coupling between the four copper (II) pairs with shorter Cu-Cu-distances $(1-3,\ 1-4,\ 2-3,\ and\ 2-4)$ is stronger than antiferromagnetic spin coupling between the two copper (II) pairs with longer Cu-Cu-

Table 2. Experimental and with Eq. (3) calculated $(\beta \cdot (\text{CuEIA})_4)$ susceptibilities $\chi_{\text{M exp}}$ and $\chi_{\text{M calc}}$ [cgs-emu] and and magnetic moment μ_{eff} (=2.828 $\sqrt{\chi_{\text{M exp}} \cdot T}$) of β - (CuEIA)₄ (a) and β -(CuEIA)₄·2 C₆H₆ (b).

a)	β -	(CuEIA) ₄	
T [K]	$\chi_{\mathrm{M~exp}} \cdot 10^6$	μ_{eff} [BM]	χ _{M calc} ·10 ⁶
2.6	276448	2.40	274650
3.5	209680	2.42	209083
6	124664	2.45	125597
10	75260	2.45	75830
15	49589	2.44	49257
20	35607	2.39	35428
40	14972	2.19	15186
60	9179	2.10	9209
80	6518	2.04	6500
100	4983	2.00	4986
125	3836	1.96	3843
150	3120	1.93	3119
175	2649	1.93	2620
200	2260	1.90	2257
230	1953	1.90	1935
260	1687	1.87	1692
290	1482	1.85	1503

T [K]	$\chi_{\mathrm{M~exp}} \cdot 10^{6}$	μ_{eff} [BM]
2.6	328434	2.61
5.7	150892	2.62
9.4	90741	2.61
13.9	61169	2.61
19.1	42593	2.55
29.5	26294	2.49
39.5	18557	2.42
50.4	13591	2.34
61.8	10497	2.28
70.5	8832	2.23
84.4	6862	2.15
108.2	5015	2.08
128.2	4053	2.04
148.8	3365	2.00
171.4	2823	1.97
190.5	2477	1.94
211.1	2183	1.92
232.0	1947	1.90
253.1	1741	1.88
275.5	1572	1.86
286.8	1512	1.86
299.0	1467	1.87

distances (1-2 and 3-4) (Figure 1 b). This is in agreement with the estimated values of the exchange integrals in the structurally similar compounds (CuBuCl)₄ and γ -(CuBuBr)₄ ⁶.

It should be noted that a similar good agreement between calculated and experimental data for β -(CuEIA)₄ could be achieved with the parameters $g=2.05,\ J_{12}=+25\ {\rm cm^{-1}},\ J_{13}=-5.8\ {\rm cm^{-1}},\ N_\alpha=30\cdot 10^{-6}\ {\rm cgs\text{-}emu},\ {\rm and}\ \Theta=-0.27^{\circ}$ [deviation

 $4.18 \cdot 10^{-4}$, Gl. (2)]. This means that the interaction between all copper atoms is ferromagnetic and is greater for the longer Cu-Cu-distances (1-2) and (3-4). This set of parameters was excluded due to the following reasons: a) In general, shorter Cu-Cu-distance means greater overlap of metal d-orbitals with orbitals of bridging oxygen leading to stronger interaction. b) Only weak spin coupling (antiferromagnetism or weak ferromagnetism) should be expected with a Cu-O... Cu bond angle of $\sim 97^{\circ}$ 12.

We interpret that ferromagnetic spin coupling (between atoms 1-3, 1-4, 2-3, and 2-4) results from orthogonality of the p_x - and p_y -orbitals at bridging oxygen with a Cu-O . . . Cu bond angle of 90° [mean value in β -(CuEIA)₄·2 C₆H₆]. This is consistent with the 90° superexchange model of Anderson, Goodenough and Kanamori ¹³. In contrast to this the spin coupling via the Cu-O-Cu bridge with bond angle 105° [mean value in β -(CuEIA)₄·2 C₆H₆] should be antiferromagnetic. The antiferromagnetic spin coupling (between atoms 1-2 and 3-4) via Cu-O . . . Cu bridge with bond angle 97° [mean value in β -(CuEIA)₄·2 C₆H₆] results from the overlap of half occupied metal d-orbitals with s-orbital at bridging oxygen.

The negative value of the Weiss-constant $\Theta=-0.27^\circ$ indicates a weak antiferromagnetic interaction between the ferromagnetic coupled tetrameric clusters, resulting in a decrease of the magnetic moment below 10 K rather than showing a low-temperature plateau when $\mu_{\rm eff}$ has reached the value expected for an S'=2 ground state with parallel alignment of the spins.

The effect of antiferromagnetic intercluster interaction is confirmed by the magnetization values at 2.6 K (Table 3). Calculated values with Eq. (4)

$$\langle \mu \rangle = g S' \left\{ \frac{2 S' + 1}{2 S'} \coth \left(\frac{2 S' + 1}{2 S'} \frac{H}{T} \frac{g \beta S'}{k} \right) - \frac{1}{2 S'} \coth \left(\frac{1}{2 S'} \frac{H}{T} \frac{g \beta S'}{k} \right) \right\}, \quad (4)$$

where S' is the effective spin of the cluster and H is taken as $H = H_{\rm ex} + H_{\rm m}$ [$H_{\rm ex}$ is the applied external field and $H_{\rm m}$ the molecular field related to the Weiss constant by Eq. (5)],

$$H_{\rm m} = N \beta \langle \mu \rangle \frac{3 k \Theta}{N q^2 \beta^2 S'(S'+1)}$$
 (5)

are compared with the experimental values, taking $g=2.05,~H=H_{\rm ex}$, and $H=H_{\rm ex}+H_{\rm m}$. $H_{\rm m}$ is calculated with Eq. (5), $\Theta=-0.27^{\circ}$.

Table 3. Magnetization data of $\beta\text{-}(\text{CuEIA})_4$ [BM/tetramer] at 2.6 K [$\langle\mu\rangle_{\text{calc}}$ calculated with Eqs. (4) and (5) taking $g\!=\!2.05,\,S'\!=\!2,$ and $\Theta\!=\!0$ (*) and $\Theta\!=\!-0.27^\circ$ (**)].

H [kG]	$\langle \mu \rangle_{\rm exp}$	$\langle \mu \rangle_{\rm calc}^*$	$\langle \mu \rangle_{\rm calc}^{**}$
1	0.20	0.22	0.20
2	0.39	0.43	0.39
4	0.77	0.86	0.78
5	0.96	1.06	0.97
6	1.14	1.25	1.15
8	1.48	1.62	1.50
10	1.79	1.95	1.82

Figure 5 shows the energy niveau diagram for α -(CuEIA)₄ and β -(CuEIA)₄ resulting from the interpretation of the magnetic susceptibility data with the isotropic Heisenberg-Dirac-van Vleck-model (HDVV-model), assuming symmetry S₄ of the tetrameric clusters. The most interesting feature is the S'=0 ground state for α -(CuEIA)₄, while the ground state for β -(CuEIA)₄ is of total spin S'=2.

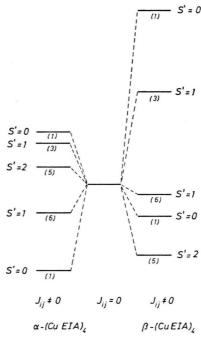


Fig. 5. Schematic energy splitting diagram of both forms of (CuEIA)₄.

The experimental susceptibility data for β -(CuEIA)₄·2 C₆H₆ (Table 2 b, Fig. 4) are very similar to that of β -(CuEIA)₄. The susceptibility increases steadily with decreasing temperature. The magnetic moment $\mu_{\rm eff}$ increases with decreasing

temperature, indicating ferromagnetic spin coupling in the S'=2 ground state fully populated below ~15 K. The existence of a low-temperature plateau in $\mu_{\rm eff}$ is in contrast to β -(CuEIA)₄ and shows the absence of an intercluster interaction as do the magnetization data at 2.6 K. The distance between the tetrameric clusters in β-(CuEIA)₄·2 C₆H₆ should be greater than in β -(CuEIA)₄ because of the intervening benzene molecules.

A fitting procedure of Eq. (3) to the experimental susceptibility data did not lead to a satisfactory agreement between the experimental and calculated values. The reason for this may be that the assumption of S₄-symmetry of the cluster is not justified. The exact symmetry as shown by a crystal structure determination is only C_1^2 .

We would like to express our gratitude to Dr. G. Keller for carrying out the magnetic measurements.

- ¹ J. A. Bertrand and J. A. Kelley, Inorg. Chim. Acta 4, 203
- ² R. Mergehenn, L. Merz, W. Haase, and R. Allmann, Acta Cryst. B (in press).
- ³ W. Haase, Habilitationsschrift, Universität Marburg 1970.

⁴ W. Haase, Chem. Ber. 106, 3132 [1973].

- ⁵ R. Mergehenn, W. Haase, and R. Allmann, Acta Cryst. B 31, 1847 [1975].
- L. Merz, W. Haase, and G. Keller, Ber. Bunsenges. physik. Chem. (in press).
- ⁷ A. P. Ginsberg, Inorg. Chim. Acta Rev. 5, 45 [1971].
- ⁸ R. L. Martin in "New Pathways in Inorganic Chemistry", edited by E. A. V. Ebsworth, A. G. Maddock, and A. G. Sharpe, Cambridge University Press, Cambridge 1968, Chapter 9.

⁹ E. Sinn, Coordin. Chem. Rev. 5, 313 [1970].

¹⁰ E. G. Jäger, Z. Chem. 6, 111 [1966].

- ¹¹ P. W. Selwood, Magnetochemistry, Interscience, New York 1956, 2. Aufl., pp. 78, 92.
 D. L. Lewis, W. E. Hatfield, and D. J. Hodgson, Inorg.
- Chem. 11, 2216 [1972].
- 13 J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York 1963, p. 165 ff.